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Abstract

Passive fluid damper is one of most widely used control devices for damping vibration of stay cables in a cable-stayed

bridge in practice. However, each stay cable features unique dynamic characteristics and requires a specific damper to

achieve the best control performance, which engenders many troubles in manufacture, implementation and maintenance of

dampers. This paper presents a new approach for damping vibration of stay cables in a cable-stayed bridge by using

adjustable fluid dampers. The principle and main features of adjustable fluid dampers with shape memory alloy (SMA)

actuators are first introduced. The solution of a taut cable with the adjustable fluid damper described by the Maxwell

model is provided. A most favorable design principle is then proposed for selecting the least types of adjustable fluid

dampers for damping vibration of a few hundreds stay cables in a cable-stayed bridge. A case study of stay cables in a

super long span cable-stayed bridge is finally performed, demonstrating that only two types of adjustable fluid dampers are

required for damping vibration of all stay cables in the bridge.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Stay cables in a cable-stayed bridge have frequently exhibited large-amplitude vibrations under wind, wind-
rain or parametric excitations [1–3]. Though the mechanisms of some excitations have not been well
understood yet, practical measures have been taken to prevent cable vibrations, in which passive fluid damper
is one of most widely used control devices installed near cable anchorage for damping cable vibration.
Theoretical studies were also carried out to evaluate the increased damping level of a stay cable after installing
passive fluid dampers and to facilitate the design of passive fluid dampers [4–9]. It was found that there exists
an optimum viscous coefficient of the damper by which the modal damping ratio of a stay cable can reach its
maximum for a given mode of vibration. However, if the viscous coefficient of the damper deviates from its
optimum value, the modal damping ratio of the stay cable decreases rapidly. As each stay cable in a cable-
stayed bridge features unique dynamic characteristics, a specific fluid damper is required to achieve the best
vibration mitigation for a given mode of vibration. This requirement engenders many troubles in manufacture,
implementation and maintenance of fluid dampers for a cable-stayed bridge. The use of magnetorheological
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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(MR) dampers with semi-active control algorithm [10] may be an alternative but some practical issues need to
be solved before it can be accepted by engineering professions.

To overcome this problem, an adjustable fluid damper with shape memory alloy (SMA) actuators has been
recently developed by Li et al. [11]. Instead of the fixed number of orifices in the piston head of a common fluid
damper, SMA actuators are installed inside the piston head to control the number of orifices so as to change
damper parameters for the best control of a group of stay cables. After the optimum viscous coefficient of the
damper of an adjustable fluid damper is achieved for a given cable, the damper then works as a passive damper
to maintain the practical merit of passive fluid dampers. The adjustable fluid damper was designed and
manufactured. The performance tests of the damper were carried out within a range of frequencies and
amplitudes and for a number of open orifices and two sizes of orifices. The test results [11] showed the
mechanical behavior of damper could well be described by the Maxwell model. However, in most of the
previous studies the passive fluid damper is assumed as a classical linear dashpot in which the damper force is
directly proportional to the piston velocity for mathematical simplicity of analyses. This assumption may
overestimate the damping ratio of a stay cable provided by a fluid damper [7]. Therefore, the incorporation of
the Maxwell model for a fluid damper into the cable–damper system is necessary, which not only reflects the
displacement dependent behavior of a fluid damper but also enables one to consider the effect of damper
support stiffness if necessary.

This paper presents a new approach for damping vibration of stay cables in a cable-stayed bridge by using
adjustable fluid dampers. The principle and main features of adjustable fluid dampers with SMA actuators are
first introduced. The solution of a taut cable with the adjustable fluid damper described by the Maxwell model
is provided based on the work of Krenk [5] and Main and Jones [6]. A most favorable design is then proposed
for selecting the least types of adjustable fluid dampers for damping vibration of a few hundreds stay cables in
a cable-stayed bridge. A case study of stay cables in a super long span cable-stayed bridge is finally performed
in this paper.
2. Adjustable fluid damper with SMA actuators

Different from a common passive fluid damper with a fixed number of orifices in its piston head, SMA
actuators are installed inside the piston head in an adjustable fluid damper to control the number of orifices so
as to change damper parameters for the best control of a group of stay cables. After the optimum viscous
coefficient of the damper of an adjustable fluid damper is achieved for a given cable, the damper then works as
a passive fluid damper to maintain the practical merit of passive fluid dampers. A SMA actuator possesses at
least two main characteristics: (1) it could control a small mechanical valve inside the damper piston to close
or open an orifice; and (2) the mechanical valve could be firmly locked at a prescribed position within a
working temperature range. A schematic diagram of a SMA actuator is shown in Fig. 1(a), and the SMA
actuators installed in the piston of a prototype adjustable fluid damper are depicted in Fig. 1(b). There are two
SMA wires, each of which is connected to one end of the valve block and fixed on the piston via two pulleys.
By using an impulse current to heat one wire each time, the SMA wire will pulls the valve block to open or
close an orifice through the positioning plate and locating ball. Two types of prototype adjustable fluid
dampers were designed and manufactured: type 1 with 1.5mm diameter orifices for large viscous coefficient of
the damper; and type 2 with 1.8mm diameter orifices for relatively small viscous coefficient of the damper. The
two prototype dampers were extensively calibrated and tested, and the experimental results demonstrated that
the damper performance could be well described by the following Maxwell model (e.g. Ref. 12):

F d þ ld

dF d

dt
¼ cdv (1)

in which Fd is the damper force; ld is the relaxation time constant; cd is the viscous coefficient of the damper at
zero frequency; and v is the velocity of piston head. Table 1 lists the experiment results of the viscous
coefficient of the dampers and relaxation time constants of the two types of adjustable fluid dampers
developed. It can be seen that the relaxation time constant increases with increasing viscous coefficient of the
damper at zero frequency. Both the viscous coefficient of the damper at zero frequency and the relaxation time
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Fig. 1. Principle and prototype of SMA actuator: (a) schematic diagram of SMA actuator and (b) prototype of SMA actuator within a

piston.

Table 1

The viscous coefficient of the dampers cd and relaxation time constants ld of two types of adjustable fluid dampers against the opened

orifice number n

n Damper type 1 (1.5mm orifices) Damper type 2 (1.8mm orifices)

cd (N s/m) ld (s) cd (N s/m) ld (s)

10 137 000 0.0038 89 000 0

9 149 000 0.0053 101 000 0

8 173 000 0.0059 112 000 0.0013

7 198 000 0.0066 129 000 0.0021

6 228 000 0.0102 146 000 0.0056

5 267 000 0.0128 169 000 0.0069

4 332 000 0.0164 213 000 0.0098

3 446 000 0.0212 278 000 0.0158

2 621 000 0.0338 427 000 0.0228
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constant become larger as the opened orifice number n becomes smaller. More details on adjustable fluid
dampers and the test results could be found in Li et al. [11].

3. Approximate solutions of cable–damper system

In consideration that most stay cables in a cable-stayed bridge are of small sag in the order of 1% sag-to-
length ratio but with a high tension-to-weight ratio [3], only a taut cable with an adjustable fluid damper
installed near one of cable anchorage is considered, as shown in Fig. 2. The adjustable fluid damper described
by the Maxwell model can be represented by a dashpot and a spring connected in series. The effect of the
damper support is also considered in terms of a spring connected to the damper in series. If the length between
the left cable anchorage and the damper is denoted as l1, the length between the right cable anchorage and the
damper is l2 ¼ L�l1, in which L is the total length of the cable. In practice, the length l1 is much smaller than
the length l2. The internal structural damping of a stay cable is very small compared with the damping
provided by a properly designed fluid damper and it is thus neglected in this study. By considering the
cable–damper system in two parts x1 and x2 using the damper position as a division, the free vibration of the
cable–damper system in the transverse direction can be described by the following partial differential equation
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Fig. 2. A taut cable with a fluid damper near its anchorage.

Y.L. Xu, H.J. Zhou / Journal of Sound and Vibration 306 (2007) 349–360352
for each part of the cable:

m
q2wk xk; tð Þ

qt2
¼ T

q2wk xk; tð Þ

qx2
k

k ¼ 1; 2ð Þ (2)

in which wk(xk, t) is the transverse displacement of the cable at point xk, and xk is the coordinate along the
cable chord axis in the kth part; m is the cable mass per unit length; and T is the cable tension force. The
boundary conditions of the two parts of the cable are w1(0, t) ¼ w2(0, t) ¼ 0 for all t.

At the damper location, there is a discontinuity in cable slope, providing a transverse force matching the
damper force Fd.

T �
qw2

qx2

����
x2¼l2

�
qw1

qx1

����
x1¼l1

" #
¼ F d . (3)

Since the velocity of the damper piston is the same as the velocity of the cable at damper location, Eq. (1)
could be rewritten as

Fd þ l
dFd

dt
¼ cd

qw1

qt

����
x1¼l1

, (4)

where

l ¼ ld þ ls ¼ cd=kd þ cd=ks (5)

in which l is the total relaxation time constant considering both damper stiffness and damper support
stiffness; ld is the relaxation time constant of damper itself; ls is the equivalent relaxation time constant of
damper support; kd is the damper stiffness; and ks is the damper support stiffness.

Although the Maxwell damper was not considered by Main and Jones [6] and Krenk and Hǿgsberg [7], the
frequency equation of the cable with an adjustable fluid damper can be obtained by simply substituting the
complex mechanical impedance cd/(1+loo1w) in place of the viscous coefficient c in Eq. (6) of the literature [6].

1þ loo1wð Þ coth pwl1=L
� �

þ coth pwl2=L
� �� �

þ
cdffiffiffiffiffiffiffi
Tm
p ¼ 0, (6)

where w is the dimensionless eigenvalue that is complex in general; and oo1 ¼ p=L
� � ffiffiffiffiffiffiffiffiffiffi

T=m
p

is the first circular
natural frequency of the taut cable without damper.

For specific values of cd=
ffiffiffiffiffiffiffi
Tm
p

, l1/L and loo1, Eq. (6) can be directly solved numerically to obtain a series of
complex eigenvalues. In practice, the damper is often installed near the cable anchorage and l1/L is rather
small. Cable vibration mitigation also focuses on the first few modes of vibration only. Based on Eq. (6) and
the work of Main and Jones [6], the approximate (asymptotic) solution of the ith nondimensional modal
damping ratio of the cable–damper system can be found as

zi

l1=L
ffi

p2ki

1þ p2ki þ iloo1ð Þ
2
, (7)
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where

ki �
cd

mLoo1
iðl1=LÞ (8)

in which ki is termed the nondimensional viscous coefficient of the damper for the ith mode of vibration. It can

also be found from Eq. (7) that the maximum attainable damping ratio is zi;max ffi
1
2

l1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iloo1ð Þ

2
þ 1

q
� iloo1

� 	
when ki;opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iloo1ð Þ

2
q

=p2, where ki, opt is the optimal nondimensional viscous coefficient of the damper
to achieve the maximum attainable modal damping ratio zi, max.

Fig. 3(a) displays the asymptotic solutions for zi/l1/L and ki for the first five modes of vibration, obtained
using Eq. (7), for the cable–damper system with l1/L ¼ 0.02, l ¼ 0.01(s), oo1 ¼ 4.152 (rad/s). Fig. 3(b) depicts
the exact solutions. It turns out that the attainable modal damping ratios obtained by Eq. (7) are only slightly
smaller than the exact solutions. However, both the asymptotic solutions and exact solutions show that the
attainable modal damping ratios are smaller for higher mode of vibration. This is due to the relaxation time
constant, which is different from the case of the cable with a linear viscous damper where the relaxation time
constant is zero and all the curves overlap with each other. The effects of relaxation time constant on
attainable modal damping ratio can be found in Fig. 4 for l ¼ 0.01, 0.04, 0.06(s) and for l1/L ¼ 0.02, i ¼ 1,
oo1 ¼ 4.152 (rad/s), in which the results in Fig. 4(a) are obtained from the asymptotic solution while those in
Fig. 4(b) are computed using the exact solution. The use of l rather than the nondimensional quantity loo1 is
to be consistent with the experimental results provided in Ref. [11]. Again, the asymptotic results are very close
to the accurate results for different relaxation time constants l. The maximum attainable nondimensional
modal damping ratio decreases as the relaxation time constant l increases; such a reduction accounts for
about 20% when the relaxation time constant l ¼ 0.06 (s) comparing to l ¼ 0. As the relaxation time constant
is associated with the damper stiffness and the damper support stiffness, one may conclude that both the
damper stiffness and the damper support stiffness will reduce the control effectiveness of the damper. Thus, it
may be necessary to include the frequency dependence property in the analysis if a damper exhibits Maxwell
characteristics and/or the damper support is not stiff enough.

4. Most favorable design principles

From Eqs. (7) and (8), one may find that when a fluid damper is installed at a given location of a cable, the
damper will have an optimum viscous coefficient of the damper that can achieve the maximum modal
damping ratio in the cable. The optimum viscous coefficient of the damper, however, depends on not only
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Fig. 3. Cable modal damping ratio vs. nondimensional viscous coefficient of the damper (l1/L ¼ 0.02, l ¼ 0.01 (s), oo1 ¼ 4.152 (s�1),

i ¼ 1�5): (a) asymptotic solutions, and (b) exact solutions.
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cable properties but also cable vibration mode. Let us consider a cable–damper system with l1/L ¼ 0.02,
l ¼ 0.02(s), oo1 ¼ 4.152 (rad/s). Fig. 5 plots the normalized modal damping ratios against the first
nondimensional viscous coefficient of the damper k1 ¼ cd(l1/L)/(mLoo1) for the first five modes of vibration
based on Eq. (7). It can be seen that the lower mode of vibration has the higher maximum modal damping
ratio. The corresponding optimum viscous coefficient of the damper cd is also significantly different from each
other; the lower mode of vibration needs the larger optimum viscous coefficient of the damper. Clearly, it is
not possible for one fluid damper to achieve the maximum modal damping ratio for all modes of vibration of a
given cable. Furthermore, as optimum viscous coefficient of the damper depends on the properties and
vibration modes of the cable and the location of the damper, it will be different for different cables. This
implies that every cable needs its own damper ideally. However, this will cause many problems in the process
of manufacture, installation and maintenance. Therefore, some compromise must be made and the grouping
process is unavoidable in practice. This study proposes a most favorable design principle to select the
favorable viscous coefficient of the damper for each cable and group these favorable viscous coefficients of the
damper according to the adjustable levels of one or two adjustable fluid dampers.

The most favorable design principle is to select the number of modes of vibration required to be damped for
all stay cables in a cable-stayed bridge and at the same time to comply with the requirement that the modal
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damping ratios in the concerned vibration modes for all stay cables should be greater than the least modal
damping ratio limit zlimit. The determination of the least modal damping ratio zlimit should consider many
practical factors. For instance, it may be selected as 0.5% damping ratio or 3% logarithmic decrement [13]. By
adopting this favorable design principle, one should plot the zi�cd curves similar to those in Fig. 5 for each
cable. Then, select the initial number of modes of vibration required to be damped, for instance i. Find the
intersection point of the ith modal damping ratio curve and the first modal damping ratio curve for each cable
from their zi�cd curves. The viscous coefficient of the damper corresponding to the intersection point can then
be regarded as the favorable viscous coefficient of the damper and the corresponding modal damping ratio is
regarded as the favorable modal damping ratio. If not all the favorable modal damping ratios are greater than
zlimit, the number of modes of vibration required to be damped should be reduced until all the favorable modal
damping ratios are greater than zlimit. The favorable viscous coefficient of the damper for each cable can be
found using Eq. (7). Let

z1
l1=L
¼

zi

l1=L
)

p2 cd

mLoo1
ðl1=LÞ

1þ p2 cd

mLoo1
ðl1=LÞ þ loo1

h i2 ¼ p2 cd

mLoo1
iðl1=LÞ

1þ p2 cd

mLoo1
iðl1=LÞ þ iloo1

h i2 (9)

then

cd;opt ¼
mLoo1

p2ðl1=LÞ

1ffiffi
i
p � loo1


 �
, (10)

where cd, opt is the favorable viscous coefficient of the damper.

5. Case study

5.1. A long span cable-stayed bridge

The long span cable-stayed bridge taken as a case study has a total length of 1596m and a main span of
1018m. The height of the two towers is nearly 300m, measured from the base level to the top of towers. The
bridge tower is of single composite column, and the stay cables are of the parallel wire strand type made up of
7mm wires. There are a total of 224 stay cables, and the length of the longest stay cable is about 540m.
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For the sake of clear presentation, only one quarter of stay cables of the bridge are considered, including 28
stay cables in the main span and 28 stay cables in the side span. Fig. 6 displays the computed first natural
frequency, f1 ¼ oo1/(2p), of each cable without any damper. The lowest first natural frequency is 0.244Hz for
the cable No. 228 in the main span and the highest first natural frequency is 1.159Hz for the cable No. 102 in
the side span. Fig. 7 shows the ratio of the damper location to the original cable length, l1/L, for each cable.
The ratio ranges from 0.018 to 0.031. Let us assume that only one adjustable fluid damper is installed
perpendicularly to the cable axis in the vertical plane near the low cable anchorage for each cable. As discussed
before, the effect of the damper support stiffness may be considered. Fig. 8 displays the damper support
stiffness for each cable. It can be seen that the damper support stiffness has an increasing tendency as cable
length becomes shorter.
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5.2. Favorable design of adjustable fluid dampers

The favorable design principle is used in this case study and the number of vibration modes is taken as two
for all the stay cables concerned. The favorable design of adjustable fluid dampers is, in fact, an iterative
process.

Firstly, assume the damper is an ideally linear viscous damper and the damper support is perfectly rigid so
that the relaxation time constant is equal to zero. Then, use Eq. (10) to find the initial favorable viscous
coefficient of the damper for each cable, as shown in Fig. 9 for stay cables in the side span and in Fig. 10 for
stay cables in the main span. Based on such information, adjustable fluid dampers are designed with enough
adjustable levels covering a wide range of viscous coefficient of the damper. The adjustable fluid dampers are
manufactured and calibrated to find their viscous coefficient of the damper and relaxation time constants. In
this case study, two types of prototype adjustable fluid dampers, which have ten orifices in the piston head and
eight of them controllable for achieving changes in damping at 9 levels, were designed and manufactured: type
1 with 1.5mm diameter orifices for large viscous coefficient of the damper; and type 2 with 1.8mm diameter
orifices for relatively small viscous coefficient of the damper. The two prototype dampers were extensively
calibrated and tested. The viscous coefficient of the damper and the relaxation time constants obtained from
the tests are listed in Table 1. According to the viscous coefficient of the damper available in Table 1 and the
required initial favorable viscous coefficient of the damper shown in Figs. 9 and 10, one may decide that the
damper type 2 is used for those cables requiring a favorable viscous coefficient of the damper below
173,000N s/m and the damper type 1 is used for all other cables. One may also decide the adjustable levels of
each damper using the number of opened orifices in the damper to best fit the initial favorable viscous
coefficient of the damper. Fig. 11 shows the grouping results of damper type and adjustable level. The next
step is to calculate the total relaxation time constant for each cable, which includes both damper stiffness and
damper support stiffness, as shown in Fig. 12. The results shown in Fig. 12 indicate that in this case study,
the damper support stiffness is much larger than the damper stiffness. Eq. (10) is then used again to determine
the favorable viscous coefficient of the damper but with the relaxation time constants included. These
results are plotted in Figs. 9 and 10 and compared with the grouping results. If the comparison is not
satisfactory, the grouping can be finely tuned until both are close to each other. One may see from Figs. 9 and
10 that some differences exist between the initial and final favorable viscous coefficient of the damper but they
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are not very significant because only the first two modes of vibration are considered in this case study. Finally,
based on the final grouping results, one may re-calculate the favorable modal damping ratios in the first two
modes of vibration for each cable and check if they are greater than zlimit. The favorable modal damping
logarithmic decrements obtained and shown in Fig. 13 for this case study demonstrate that the modal
damping logarithmic decrements in the first two modes of all the stay cables concerned are greater than 4%. It
should be pointed out, however, that the favorable modal damping logarithmic decrements shown in Fig. 13
are obtained based on the assumption of a taut cable. For the first mode of vibration of the longest stay cable,
sag effect may reduce the modal damping logarithmic decrement to some extent.
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6. Conclusions

The adjustable fluid dampers with shape memory alloy actuators, which can be well described by the
Maxwell model, have been introduced in this paper. The asymptotic solutions have been found to determine
the optimum viscous coefficient of the damper of an adjustable fluid damper. The most favorable design
procedure with a grouping process has been proposed for selecting the least types of adjustable fluid dampers
to damp vibration of a few hundreds stay cables and has been applied to stay cables in a super long span cable-
stayed bridge as a case study. The results from the case study demonstrate that only two types of adjustable
fluid dampers are required for damping vibration of all stay cables in the bridge. The modal damping
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logarithmic decrements in the first two modes of all the stay cables all are greater than 4% even considering
the effects of damper stiffness and damper support stiffness. It should be pointed out that the proposed
approach is valid for a taut cable and for damper location very close to cable anchorage.
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